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Abstract

Objectives We aimed to investigate hypercholesterolaemia-induced early renal lesions
which result in abnormal expression of endothelin A receptor (ETAR), induced nitric oxide
synthase (iNOS) and matrix metalloproteinase 9 (MMP-9). We hypothesized that this is
due to an upregulated endothelin (ET) pathway consequent to hypercholesterolaemia and
that CPU0213, a dual ET antagonist, could mitigate these changes.
Methods Rats were randomly divided into four groups: (1), control; (2), high-fat diet
for 60 days (HFD); HFD rats medicated in the last 15 days with either (3) CPU0213
(30 mg/kg daily, s.c.) or (4) simvastatin (4 mg/kg daily, p.o.).
Key findings Body weight, serum triglycerides, total cholesterol and low-density-
lipoprotein cholesterol were significantly increased, whereas high-density lipoprotein
cholesterol decreased in the HFD group, relative to normal. Meanwhile, these changes were
associated with upregulation of mRNA and protein of ETAR, iNOS and MMP-9 in the
kidney. The lipid-lowering effect of simvastatin was predominant, lessening abnormal
expression of these molecules in the kidney dramatically. Interestingly, CPU0213
significantly normalized expression of mRNA and protein of ETAR, iNOS and MMP-9,
comparable with simvastatin, leaving no changes in hyperlipidaemia.
Conclusions CPU0213 relieves renal lesions by blunting hypercholesterolaemia caused
by the upregulated ET system, iNOS and MMP-9 in the kidney. This indicates that
CPU0213 is promising in treating patients with end stage renal disease.
Keywords endothelin receptor antagonist; ET-1; hypercholesterolaemia; iNOS; MMP-9;
simvastatin

Introduction

Hypercholesterolaemia is actively involved in renal disease[1] and is predictive in the
progression of chronic renal failure.[2] Hypercholesterolaemia may increase renal
deposition of extracellular matrix, inflammatory cell infiltration, cellular proliferation
and glomerulosclerosis.[3] Inflammatory mediators and cytokines that are produced in
response to hypercholesterolaemia may facilitate renal remodelling and dysfunction
associated with glomerulosclerosis and tubulointerstitial sclerosis.[4] In addition,
hypercholesterolaemia accompanying chronic renal failure likely exacerbates renal lesions
attributed to accumulating inflammatory factors.[5] Activated renal induced nitric oxide
synthase (iNOS) as a source of reactive oxygen species (ROS) is implicated in the
pathology of renal disease.[6,7]

In the presence of an increased genesis of ROS, excessive matrix metalloproteinase 9
(MMP-9) is released from mesangial cells, participating in remodelling of the glomerular
basement membrane, the glomerular apparatus and tubules leading to sclerotic changes in
the kidney.[8] Increasing evidence suggests that chronic kidney disease is strongly linked
with abnormal MMP-9 associating with proinflammatory cytokines, including endothelin-1
(ET-1), iNOS, interleukin-1 (IL-1), tumour necrosis factor-a (TNFa), transforming growth
factor-b (TGFb), etc. Low-density lipoprotein cholesterol stimulates mesangial cells to
generate TNFa[9] and chronic renal failure is always associated with hypercholester-
olaemia, which produces more ET-1[10] activating multi-signal transduction pathways to
elicit more pro-inflammatory factors in the kidney. Thus, the ET pathway is likely to be
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central to the recruitment of ROS, iNOS and abnormal
activity of MMP-9, and probably leucocytes[11] in diseased
kidney.

CPU0213 is a low-selective endothelin receptor antago-
nist (ETRA) that has shown promise in attenuating
cardiac[12] and vascular lesions[13] and renal dysfunction.[14]

Blockade of the ET receptors brings about benefits in renal
dysfunction and efficacy of ETRAs in chronic renal failure is
being investigated in ongoing clinical trials.[15,16]

Simvastatin, a classic lipid-lowering agent, inhibits
3-hydroxy-3-methylglutaryl coenzyme A reductase and it,
hopefully, eradicates changes caused by hypercholesterolaemia
in chronic renal failure; unfortunately, it does not prolong the
lifespan of patients. Thus, it is necessary to find an alternative
way to mitigate the further renal sufferings from hypercholes-
terolaemia in patients with chronic renal disease. Herein, we
hypothesize that hypercholesterolaemia may activate upregula-
tion of renal endothelin A receptor (ETAR), iNOS and MMP-9,
causing further harm to the affected kidney, which is likely to
be critically mediated by an abnormal ET pathway. Our aim
was to verify whether a high-fat diet could induce abnormal
expression of iNOS, ETAR and MMP-9 in the kidney and,
secondly, whether a dual endothelin receptor antagonist,
CPU0213, is sufficient to relieve renal changes resulting from
hypercholesterolaemia, and to compare its effects with those of
simvastatin.

Materials and Methods

Drugs and reagents

Simvastatin was obtained from Hangzhou MSD Pharmaceu-
tical Company Ltd. (Lot No. W1049; Hangzhou, China).
Kits for biochemical measurements (triglyceride (TG), total
cholesterol (TC), high-density lipoprotein cholesterol (HDL-C)
and low-density lipoprotein cholesterol (LDL-C)) were
provided by Jiancheng Bio-engineering Company (Nanjing,
China). The reverse transcription–polymerase chain reaction
(RT-PCR) reagents (oligo d(T)18, dNTP, Trizol, RNase
inhibitor, avian myeloblastosis virus (AMV) reverse transcrip-
tase and Taq DNA polymerase) were obtained from Promega
(Madison, USA). CPU0213 was supplied by the Medicinal
Chemistry Department of China Pharmaceutical University
(CPU), Nanjing, China.

Animals and diets

Male Sprague–Dawley rats (qualified No. SCXK (SU) 2002-
0018), 40 in total, weighing 200–220 g, were obtained
from the Animal Center of Qinglongshan in Nanjing. All
procedures were approved by the University Ethic Commit-
tee, in accordance with the Guidelines for the Care and Use
of Laboratory Animals in Jiangsu Province, China.

Rats were kept in a temperature-controlled (25�C) room
under natural lighting and had free access to water. High-fat
diet was purchased from the Animal Center of the University,
containing, as percentage of energy: 10% lard, 10% egg yolk
powder, 1% cholesterol, 0.2% bile salt and 78.8% basal
chow.

Experimental procedure

Rats were randomly divided into four groups as follows:
(1) normal rats with food supply restricted to 15 g per rat on
average (control), reported previously;[17] (2) high-fat diet
with no food restriction for 60 days (HFD); rats on the high-
fat diet were administered, on the last 15 days, with either
(3) CPU0213 (HFD + CPU0213) (30 mg/kg daily, s.c.)
or (4) simvastatin (HFD + SIM) (4 mg/kg daily, p.o.). The
rats were allowed free access to water. Body weight was
monitored weekly. Serum total cholesterol was monitored
at the end of the first and second month, confirming
sustained hypercholesterolaemia. Drugs were suspended in
0.5% carboxymethylcellulose sodium (CMC-Na) before
medication.

Rats, fasted overnight, were anaesthetized with urethane
(1.5 g/kg, i.p.), and blood samples were taken by a catheter
inserted into the right common carotid. Then serum was
separated and collected by centrifugation and stored at -20�C
before biochemical assays. Rats were sacrificed and kidneys
were quickly harvested and placed under -80�C in liquid
nitrogen before analysis.

Biochemical assays

Serum levels of TC, TG, LDL-C and HDL-C were measured
according to instructions from the kit manufacturer.

RT-PCR

Renal tissue samples were processed as previously
reported.[17,18] After the supernatant was discarded, to the
remainder was added cold 75% ethanol; this was then
centrifuged, dried and extraction of RNA was conducted.
RT-PCR of iNOS, ETAR and MMP-9 was performed in
several steps and the amplified products were measured by
imaging analysis.

Western blot

Renal tissue, 100 mg in 400 ml, was homogenized and protein
was extracted and stored at -20�C for further analysis,
and Western blot was performed according to previous
reports.[17,18] Briefly, samples were separated on a 10% SDS
polyacrylamide gel, transferred to nitrocellulose membrane,
blocked in 5% TBS–Tween and then probed with the first
antibodies against ETAR, iNOS and MMP-9, separately (from
Santa Cruz Biotechnology, Santa Cruz, CA, USA), and a
secondary anti-goat antibody conjugated to horseradish
peroxidase (Santa Cruz Biotechnology) for 1 h each at room
temperature. After extensive washes, bands were visualized
using reagents for enhanced chemiluminescence.

Statistical analysis

Results were expressed as mean ± SD. Analysis of variance
was used and the difference between two groups was
calculated by the Student–Newman–Keuls test for the
statistical meanings; a level of P < 0.05 was considered as
significant.
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Results

Body weight and blood lipids

The body weight of HFD rats was significantly increased,
relative to normal (P < 0.05), and was significantly reduced
by simvastatin, but was not affected by CPU0213. Serum
levels of TC, TG and LDL-C in the high-fat diet group were
significantly elevated (P < 0.01), while HDL-C was reduced
(P < 0.01), relative to normal, suggesting that hypercholes-
terolaemia had been well established. Simvastatin reversed
the changes in serum lipids completely, relative to the
untreated HFD rats (P < 0.05). In contrast, rats medicated
with CPU0213 did not exhibit a blood lipid-lowering effect,
with serum lipids being no different from the HFD group
(Table 1).

Endothelin A receptor and induced nitric oxide
synthase

In the presence of hypercholesterolaemia, increased inflam-
matory factors such as iNOS and ETAR were found in the
kidney. iNOS mRNA and protein were upregulated sig-
nificantly following 60 days of HFD, relative to control
(Figure 1a, b). We evaluated ETAR mRNA and protein
expression in the HFD group, and these were upregulated
significantly relative to the normal group (Figure 2a, b).
CPU0213 exerted a beneficial effect on these changes,
comparable with that of simvastatin (P < 0.05), by reducing
the upregulation of ETAR and iNOS.

MMP-9

As we found above, there was increase in iNOS and ETAR in
renal tissue of HFD rats, which may increase MMP-9 in the
renal tissue. As predicted, an increase in expression of
mRNA and protein of MMP-9 was found in the kidney in
response to hypercholesterolaemia, which accounted for
renal remodelling and fibrosis, resulting in further damage
to the renal cells in HFD rats, relative to control (P < 0.01)
(Figure 3a, b). Both simvastatin and CPU0213 were effective
in attenuating these changes.

Discussion

Renal disease may present with dyslipidaemia, manifesting
as an increase in serum triglycerides in the early stages, then
a reduction in HDL followed by elevated LDL associated
with the advanced stage of renal disease.[5] These changes

Table 1 Changes in body weight, total cholesterol, triglyceride, high-density lipoprotein and low-density lipoprotein in rats fed with high-fat diet

BW (g) TC (mmol/l) TG (mmol/l) HDL (mmol/l) LDL (mmol/l)

Control 338 ± 45 1.15 ± 0.27 1.25 ± 0.32 0.83 ± 0.12 0.31 ± 0.07

HFD 437 ± 35* 2.27 ± 0.15** 2.31 ± 0.32** 0.55 ± 0.15** 0.82 ± 0.15**

HFD + CPU0213 395 ± 42 1.85 ± 0.29 1.95 ± 0.23 0.59 ± 0.12 0.75 ± 0.14

HFD + SIM 376 ± 57# 1.66 ± 0.36# 1.75 ± 0.31# 0.71 ± 0.13# 0.58 ± 0.10#

BW, body weight; TC, total cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein. The increases in BW, TC,

LDL-C and TG and decrease in HDL-C found in the high-fat diet (HFD) rats were reversed by simvastatin (HFD + SIM), but no blood-lipid lowering

effect was brought about by CPU0213 (HFD + CPU0213), a dual endothelin receptor antagonist. Data are mean ± SD, n = 6. *P < 0.05, **P < 0.01 vs

control; #P < 0.05 vs HFD.
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Figure 1 mRNA and protein expression of induced nitric oxide

synthase in the kidney of rats fed with a high-fat diet. Upregulation of

mRNA (a) and protein expression (b) of induced nitric oxide synthase

(iNOS) was caused by hypercholesterolaemia in the kidney of rats fed

with a high-fat diet (HFD). These changes were suppressed by either

simvastatin (HFD + SIM) or CPU0213 (HFD + CPU0213). Data are

mean ± SD, n = 6. **P < 0.01 vs control; ##P < 0.01, vs HFD.
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may serve as a causal factor in renal deterioration into
uraemia.[19] Thus, abnormal blood lipids, which are the
consequence of disturbance of lipid metabolism in chronic
kidney disease, act inversely as an aetiological factor, not
only eliciting atherosclerosis and coronary disease[20] but
also damaging renal tissue leading to exacerbation of renal
dysfunction and remodelling.

Atherosclerosis is initiated by hypercholesterolaemia and
is recognized as a chronic inflammatory disease. Hyperch-
olesterolaemia elicits an inflammatory reaction, which harms
the vascular endothelium, and its role in the cardiovascular
system has been fully recognized.[20] These are considered as
‘partners in crime’ in the pathology of atherosclerosis.[21] It
is of interest that the glomerular apparatus and renal tissue
respond to elevated LDL-C, presenting lesions that share
similarity with those in the intima and vasculature of the
renal vascular system. A high-fat diet, in this study, elevated
levels of TC, TG, LDL-C and reduced HDL-C in the serum

of rats, causing abnormal expression of iNOS, ET-1 and
MMP-9 in the renal tissue. These are considered as markers
of early renal lesions at the molecular level caused by
hypercholesterolaemia. As expected, benefits to the kidney
were shown by the lipid-lowering effect of simvastatin,
leading to complete blunting of the molecular events in
response to hypercholesterolaemia. These findings were in
line with those reported for statins in the literature.[22,23]

Endothelin-1, a powerful vasoconstrictor and proliferator,
is synthesized and secreted in mesangial, endothelial,
epithelial and tubular cells in the kidney.[24] An excess of
ET-1, as found in this study, is revealed by significant
upregulation of its protein and mRNA; thus, an activated ET-1

**

##

#

(a)

HFD HFD+
CPU0213

HFD+
SIM

Control

ETAR
18S

ET
A
R

 /1
8S

1.2

0.9

0.6

0.3

0

ETAR
�-Actin

ET
A
R

 /�
-a

ct
in

**

##

##

(b)

1.2

0.9

0.6

0.3

0
HFD HFD+

CPU0213
HFD+
SIM

Control

Figure 2 mRNA and protein expression of endothelin A receptor in the

kidney of rats with hypercholesterolaemia induced by a high-fat diet.

Upregulation ofmRNA (a) and protein (b) of endothelin A receptor (ETAR)

was found in the kidney in response to hypercholesterolaemia in the rats

fed on a high-fat diet (HFD). These changes were suppressed by either

simvastatin (HFD + SIM) or CPU0213 (HFD + CPU0213). Data are

mean ± SD, n = 6. **P < 0.01 vs control; #P < 0.05, ##P < 0.01 vs HFD.
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Figure 3 mRNA and protein expression of matrix metalloproteinase 9

in the kidney of rats with hypercholesterolaemia induced by a high-fat

diet. Upregulation of mRNA (a) and protein expression (b) of matrix

metalloproteinase 9 (MMP-9) was found in the kidney in response to

hypercholesterolaemia in the rats fed on a high-fat diet (HFD). These

changes were suppressed by either simvastatin (HFD + SIM) or

CPU0213 (HFD + CPU0213). Data are mean ± SD, n = 6. **P < 0.01

vs control; ##P < 0.01 vs HFD.
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pathway in the kidney is a consequence of hypercholester-
olaemia. Expression of ET-1 mRNA and protein is low in the
normal kidney, as well as in the normal aorta or in early
atherosclerotic lesions, but this expression can be dramatically
increased in aortic neo-intima and adventitia when a status of
atherosclerosis has been established,[10] coincident with the
present findings in the kidney. In the kidney, ET-1 acts in a
paracrine/autocrine manner regulating renal and intrarenal
vasoconstriction, mesangial cell contraction and proliferation
of renal cells, modulating the amount of MMP released and
regulating water–sodium retention.[24] It has been established
that an abnormality of the ET system serves as a participatory
factor in glomerular and tubular fibrosis in diabetic nephro-
pathy relating to renal oxidase stress by activation of NADPH
oxidase.[14] Therefore, ET receptor antagonists have become a
major focus in treating renal disease[15,25,26] and hyperten-
sion[27] in certain situations. However, few studies have been
performed to investigate changes in biomolecular events in the
kidney in hypercholesterolaemia relating to an activated renal
ET pathway.

It is of interest to address whether a blockade of ET
receptors by CPU0213 blunts changes in iNOS and MMP-9
compared with the lipid-lowering effect of simvastatin.
Benefits from this lipid-lowering effect of simvastatin are
profound in ameliorating the progression of chronic renal
disease. Statins decrease the odds of developing renal
dysfunction by 13% (P < 0.01) and the benefits of statins to
patients may be independent of decreasing cholesterol and are
promising in dealing with chronic renal disease.[28] The blood
lipids and mortality of cardiovascular events in chronic renal
disease are greatly reduced in statin users but the overall death
rate does not decline, thus leading to the concept that the final
place for the reno-protective effect of statins in treating
chronic renal disease has not yet been established.[29] The
benefits of statins in alleviating renal disease may stem from
their antioxidative effect,[30] and this idea is supported by our
study in that simvastatin suppresses iNOS mRNA and protein
expression contributing, at least partly, to the mitigation of the
increase in MMP-9 in hypercholesterolaemia. An antioxidant
activity is also delivered by the dual endothelin receptor
antagonist CPU0213; an intimate interaction of ET-1 with
ROS has been well established.[31] A vicious cycle connects
activation of the ET pathway with an excess of ROS and an
exacerbated ET pathway in the presence of hypercholester-
olaemia is mediated by ROS.[32] ROS mediate an activation
of the ERK1/2 pathway by ET-1,[33] thus blunting of iNOS
and MMP-9 upregulation caused by abnormal blood lipids
is achieved by CPU0213 medication. In addition CPU0213 is
effective in suppressing NAPDH oxidase in the vascula-
ture,[14] resulting in an improved vasodilative response and
attenuating the oxidative response by isoproterenol in the
myocardium.[34]

MMP-9, which degrades extracellular matrix (ECM),
closely participates in a variety of renal diseases.[35] Statins
suppress MMP-9 in the affected vasculature.[36] Tubular
epithelial cells can be converted into stromal cells, causing
renal fibrosis via an epithelial–mesenchymal transformation
mechanism, which is attributed to an activation of MMP-9 by
the combined effects of epithelial growth factor (EGF) and
transforming growth factor (TGF)-b1.[37] Thus, activation of

MMP-9 serves as a key step to deliver signals in renal
remodelling, thereafter followed by renal dysfunction. In this
study we proved that both endothelin receptor antagonist
CPU0213 and simvastatin diminished the over-expression
of MMP-9 in the renal lesions caused by a high-fat diet,
suggesting that an activation of ETAR is critically involved
in renal disorders and that an abrogation of the insult of
hypercholesterolaemia by simvastatin is attributed to sup-
pression of renal ETAR. Thus, ET-1 exerts an important
action on the epithelial–mesenchymal transformation
mechanism through activating MMP-9.

The limitations of our study include the fact that we did
not demonstrate the functional and morphological derange-
ment caused by hypercholesterolaemia and that these
changes can be reversed by either CPU0213 or simvastatin.
CPU0213, as a dual endothelin receptor antagonist, may be
favourable for dealing with renal disease. In this aspect, we
did not demonstrate an upregulation of ETBR. However, this
has been shown in cardiomyopathy and heart failure in
several previous reports,[17,18] and also in renal failure[6] and
diabetic nephropathy.[32]

Conclusions

In this study, we demonstrated that a dual endothelin receptor
antagonist, CPU0213, suppressed the responses consequent to
hypercholesterolaemia by normalizing expression of ETAR,
iNOS and MMP-9 in renal tissue. The favourable outcome
with CPU0213 was comparable with the lipid-lowering effect
of simvastatin. An elevation in cholesterol may be beneficial
for better survival of patients with renal failure[38] and a higher
incidence of adverse reactions to statins is not acceptable in
patients with end stage renal disease.[39] Thus, the beneficial
effect from the use of statins in treating chronic renal failure
patients is controversial. As compared with simvastatin, a dual
endothelin receptor antagonist is promising in relieving renal
lesions at the molecular level in hypercholesterolaemia.
Because CPU0213 relieves renal damage without affecting
the elevated cholesterol and triglycerides, the pattern of drug
effect of endothelin receptor antagonists may be suitable in
treating patients with end stage renal disease. Endothelin
receptor antagonists could be an alternative to statin therapy in
the clinical setting.
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